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family of solutions for the oscillatory case h<« 2 (the aperiodic case is simpler and will
not be considered). We construct the matrix Y (f) using the matrix Y,( of (2.17) taking
the real and imaginary part of the first column of VY,() as its first and second column.
After simple reduction we obtain the following asymptotic representations for the solutions
of (4.1) (b,, are the coordinates of the vector c):

t v
M (t) dt + b, sin S‘Yh (t)dt 40 (1))exp S vy (t)dt
ts to

e e

q(t) = (Iu cos

t t t
2 (1) =B (1) + bam (1) con § m ()b + (3,v1.(9) — bam (@) 8in § me (0 g7+ 0 (1) oxp (i (mran
£, ty e

vi(t) = Re Ay (&) = —h (8/2,m, (&) = Im A, (&) = (1 — A2/&)*"

Note 3. The above method of construcing the real FSM Y (i) of the linearized system (2.2)
using the FSM of Y,(t), with the asymptotic form given by (2.17), can also be used in the
general case of n degrees of freedom. If the roots A, are not real (when M =_M‘), then
we take the real and imaginary part of the i-th column of Y,() as the i-th and (r4i=-th col-
umn of Y (). On the other hand, if A, are real, then we take as the i~th and (n-i)-th
column of Y () the corresponding columns of the matrix 1/2(¥,() + ¥a:(). The fact that this
yields a real FSM of Y (1) of the linearized system (2.2) can be confirmed using the asymptotic
representation (2.17) for Y,(1).
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ON TWO TYPES OF SWIRLING GAS FLOWS*
A.F. SIDOROV

Two classes of exact solutions of the three-dimensional stationary equa-

tions of gas dynamics are constructed. The solutions are used to describe
isentropic gas flows with two types of swirling in axisymmetric divergent

channels. The effect of swirling on the thrust of special-type nozzles

is studied.

Approximate analytic or numerical methods were used earlier to study radial-equilibrium
flows with arbitrary swirling in /1/, and various qualitative features of the swirling flows,
such as the appearance of vacuum kernels, back flows and stagnation zones at the inlet to the
nozzle throat were discussed in /2—4/. Analytic solutions in the transonic approximation were
constructed in /5/ and the dependence of the nozzle thrust on the swirling parameters were
investigated in /1, 6-9/.

1. 1In studying swirling gas flows we will use two classes of solutions of the equations
of gas dynamics for the case when the velocity vector components u, and the function @ = pvt
(p is density and y is the adiabatic index) depend linearly on some spatial coordinates I
Gl :E‘irst we consider isentropic three-dimensional flows when the linear dependence on Z, and

z3 has the form
Q=2zglz) u =481z (1.1)
= L@) T+ fil@) s+ g lm), i=2,3

*prikl.Matem.Mekhan.,47,5,754-761,1983.
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The eight functions g, g;, l;, f; satisfy the following set of ordinary differential equations /10/:

6g v —1718g =0, gl + Ll + Lfi =0 (1.2)
afi’ +1ali + faft = 0, g8 + 8ali + gof: = 0
&g +(v—Neg@ +L+1f)=0

where S, = const is the value of the entropy function in the equation of state p = SepY, and
p is the pressure. We find that Egs.(l.2) are completely integrable in quadratures.
First we will obtain, in an cbvious way, the three integrals (K, and A4, are arbitrary

constants)

Yeg? + v (v — 1) Sog = Ko, 8 = A3l + A (1.3)
The constants A, Ay correspond to the transfer of the origin of coordinates along the axes

z, and Z3 and we can assume without loss of generality that Ad,=A4,=0, i.e.
g =g=0 {(1.4)

Furthermore, from the second and third equation of (1.2) (C; are arbitrary constants) it follows

that
fo = Calsy Iy — fs = Cyls (1.5)

Eliminating from the second equation of (1.2) containing I, the functions l;’ and f, we obtain,
using the last equation of (1.2) and (1.3), an eguation for [, which, on integration, yields

Iy=Cug, (B — g1, B = 2K, C, = const (l.86)

Substituting into the second equation of (1.2) for I’ the representations for all func-
tions l; and f; in terms of g, we obtain a second-order equation for ‘g (%;). Substituting
1/.8,'* =y in this equation and taking g1 as an independent variable, we obtain for y(g,) a
first-order linear equation, which on integration yields

y =& (B— &) o-b g2 (y + 1) — B (y — DI (C* — (1.7)
2(p—Dafle @+ 1)—p @ — 1B —2)e-Won dg)
= (l/zca2 -+ C;) C", C* = const

Computing in (1.7) the quadrature using the substitution =z (p — )Y*D =z, we obtain the
last integral containing arbitrary constants C* and 4,

zi+ A4H=2"" S G (81)]""(— v+ -‘;Li-z—:) [C* + 2(y—1)aG (g)] 186, G (1) =g (f— gHvern  (1.8)
Relation (1.8) defines the function g, (z,) implicitly, and the function /; has the form
=27 (y — 1) G (g [C* + 2 (y — 1)* oG ()] (1.9

Thus we have obtained a general solution for Egs. (l.2) depending on eight arbitrary con-
stants C,, Cy, C4, 4y, 44, 44, Ko, C*. Three of these constants A4,, 4, and A,(4, defines the
displacement along the &z;~axis) are not real, and we shall henceforth assume that 4, = A4, =
Ay =0.

The class of solutions of (l.1) has the following geometrical property: the components u,
and u; maintain a constant value along the stream lines, each of which represents a plane curve.
Indeed, taking 2z, as the parameter along the stream lines we find from the second and third
equation of (1.2), using the equations of the stream lines, that if u; = u,° = conmst (i = 2, 3)
along some stream line, then this stream line lies in the plane

Us’Zy — Uy°zy = C° = const

2. We shall consider the case when the class of solutions constructed defines asymmetric
flows with z, as the axis of symmetry. Here it is sufficient to satisfy two conditions

Lis + lfa =0, LP418=1f2+f (2.1)
obtain from (l.1), if we require that the radial velocity component u, = Y uf + &y should
depend only on z; and r= z? 4z, Taking (1.5) into account, we obtain from (2.1) the

following possibilities: 1) Iy =f, =0, L=f5; 2) L=f=C4=0;3)C,=1, C; is arbitrary,
and 4) Cy = —1, C,=0.

For case 1 we have C, =0 in (1.6) and the stream lines lie in meridian planes passing
through the z,-axis. There, is no rotation of the stream about the z,-axis. Case 2 leads
to trivial solutions with g = const: g, = copst. Case 3 for which 2l, — C,ly = 0 leads, by
virtue of the last equation of (1.2), to the same trivial possibility.

We shall consider case 4 in more detail

Us = lp (T1) T3 ~ U3 (21) T3, us = I3 (1;) 72 + L2 (Z1) Zs (2.2)
(2 = (L + L))
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We shall use the representations (2.2) to solve the following problem. Let the inlet

cross section of the axisymmetric channel (z, > 0) be a circle, =z +zd < AR, 7, =0, and
let the following quantities be given:
8 0) =g°>0, l,(0) =1Ilcos @y Iy(0) = !sin g, (2.3)
Po= const

Then Eqgs.(2.2), which define at z, = 0 a field of transverse velocities of a gas flow
twisted as a rigid body (such a twist is studied in /3/ for the case of a rotating block of
solid fuel burning uniformly from one end). The parameter ¢, determines the swirling intensity,
and there is no swirling when @, =0. The form of the stream lines emerging from the points
of the circumference ¢q (r = R, z, = 0) and forming the walls of some nozzle at z, >0, depends
on the value of the parameter ¢,.

Let us investigate how the form of the nozzle and its thrust are affected by variations
in @, for various nozzle lengths L. We note that the flows in question are non—isocenergetic.
The constant ¢, in the Bernoulli integral, for the stream lines passing at =z, = 0 through
the points of the circumference r = A, is equal to

o=+ K O0<MKR)
We shall further assume that K, = (y — 1) (this can be done without loss of generality by
choosing a suitable system of units). From (1.6) we find

C, = I8in @Gy, @& = —C3, Gy = G (g,) (2.4)

and (1.9) in this case yields
C* = 2 (y — 138G, (2.5)

Thus we have found all the arbitrary constants. Next we determine the stream lines. We
find that although the integral in (1.8) cannot, in general, be expressed in terms of elementary
functions, the equations of the stream lines can be integrated explicitly using the quantity

g as a parameter along these lines.
Fixing on the circumference g the point

z’ =Rcosyp, 23 = Rsing (2.6)
so that
uy’ = Rlcos (9 + @), uy = Rlsin (¢ + @) (2.7)
We use Egs.(1.8),(2.4) and (2.5) to reduce the equations of the stream lines to the form
dz;, = —(y — 1) ByG "FYisdG (2.8)

F =1 — sin? oG G, B, = 21 (y — 1)"MIG e

Integrating (2.8), taking (2.6) and (2.7) into account, we reduce the parametric equations
of the stream lines to the form

z, = R {sin (¢ + @) 8in @, + cos (¢ + @) Go*rG1F*] (2.9)
z3 = R [—cos (@ + o) 8in Qo + sin (@ + o) Go"*G™1F1]

Analysis of the representations (2.9) yields directly the possible range of variation of
&, nawmely g, lg., gl g4 =2 (yx 1)"s. The value g =g, corresponds to the point at
which the stream lines reverse their direction, while the pressure and density both vanish at
g, = g_ (this happens when the stream lines recede to infinity). The integral in (1.8) will
diverge, since /,(1 — 2y)(y — 1) << —1. The radius of the axisymmetric nozzle formed by the
stream lines emerging from the circumference g is given by the expression

r = RGy G~/ (2.10)
Clearly, when g1—~ 8 ., we have r—» oo and % —*> o, i.e. the nozzle walls diverge without
limit. The following expression holds for the thrust I (g,) of the nozzle when z;, & [0, L] and
r << Re (o) (Re (@0) = r (L))

R
—;—“'TL(%):-SPofdf-i-lz.(%)—-;—PLRL’((Po) (2.11)

[}
Rp(pd)

I, (o) = S prdr
R
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where p, is the pressure at the nozzle inlet gz, =0 and pp is the back pressure at the cross
section z; = L . The first and third term of (2.11) are independent of ,.

Consider the behaviour of the integral Ir (9,). The function G (g) (1.8) decreases
monotonically (f = 2 (y — 1)) to zero when g, = [g_, g,]. Let the second equation of (1.8) define
the function g, = g, (G) and let g, = g, (L, ), G = G (L, ¢y) in the cross section =z, =L . Then
using (2.4) and (2.5) we obtain, from the integral (1.8), the following expression for G (L,
Po) : ar & .

L=—3- S & (G E ' Fd6 (2.12)
G(L, )

For fixed L it follows at once from (2.12) thatthe function G(L, @) increases monotonic-
ally for ¢ & 10, n/2) (G (L, 9y) << G, and the integral (2.12) converges at the point G = G,),
while from (2.10) we find that R (¢,) is a monotonically decreasing function of . Using
(2.10) we can write the integral I (@) in the form

Gy
I (9o) = 1o S g7 (6) 646 To= 20 WMO-DGU-DI-D (o, (V-1 1U(+Ng (2.13)
G(L, @)

When L = o0, we have G (oo, ¢,) = 0, and the integral (2.13) converges and is independent
of @, since 9> 1. When the length L is finite, the integral Ip (9,) decreases monotonically
as @, € [0, n/2) increases. If pL =0 in (2.11) (no back pressure), then the thrust of the
corresponding nozzles decreases for finite L as the swirling increases. Computations show
that the reduction in thrust is insignificant.

Figure 1 shows graphs of I (p,) (the dashed line corres-
ponds to @, = n/4) and the nozzle walls in the  z;,r-

L ____ﬂ Plane, for p= 1.4 and ¢ = 2. The values of the
0/( remaining parameters areR =4, 8, =1,8° =g, 4 01,1 =1.
f4 Note that the flow is supersonic everywhere within the

/_/ nozzle. Indeed, we have the following expression for
the speed of ' sound c:
0 =1~ k—1)g*
=2 / Then for g > &, we have |u|*>¢. Now using (2.10)
44 we obtain for large =z, the following asymptotic estimates
\ /%4 at the nozzle walls: r=0 (z;), p = O (z;”™).
T2 ) 7/ 4 3. cConsider three-dimensional flows with a linear dep-
endence on a single coordinate
I Uy = gi (%4, 24), i =1, 2; (3.1)
0775w s
\\ - Uy=fs(2y, Zy)Ts+fo(Z1s25)
Q=g(z,, 5), §¢ = const

I/} 0 20 L
The function g, Ji and g satisfy the following set of

Fig. 1 equations:

o
16_1:-*-&3% %—So%go, i=1,2; (3.2)

9, of
& a—:: +8:-5z{- =+ fafi==0, i=0,3
[ 9, 9,
8175"*’ E:';z%'i"(‘\’— 1)G(fa+?g: + %:':-)==0
We shall investigate the class of axisymmetric motions (3.1) with Zy used as the axis of sym-
metry in the form
&Gr=aB)z, — b))z, =0z, +a(})z, (3.3)
e=¢@®), fi=hHE), E=V2d+ 25

Suk;stituting (3.3) into (3.2) we obtain the following set of equations for the functions a, b,
&, It
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a @b+ ¥t =0, of/E+fsfi =0, i=03 (3.4)
a? — b 4 ad’f -y (y — )58 =0
agt+(v—Nglfs+2a+dEH =0

The case ¢ = 0 (then we also have f,= 0) corresponds to plane parallel flows, and we shall
not consider it. The first two equations of (3.4) yield two simple integrals

b = bet?, fo = Cofy; bo = const, C, == const (3.5)

We can write (o = 0 without loss of generality, since specifying the value of (y is
equivalent to shifting the origin of coordinates along the z4-~axis. Using (3.5) we obtain
another two integrals from the remaining equations of (3.4)

86 + ¢ (v — 1)72808 + Yaby?t? = C, = const (3.6)
g = Cy (af)'7Yf,r*, (. = const

This reduces the problem of integrating the system (3.4) to that of integrating a single first-
order equation
affy +f# =0 (3.7

in which the function a must be expressed in terms of § and f; with help of (3.6). Integration
in quadratures cannot be carried out when ¥y is arbitrary.

We note that in the case of the solutions of (3.l1l), Eq.(3.2) implies a property analogous
to that established in Sect. 1, namely that the velocity component u, has a constant wvalue
along the stream lines. Unlike the previous case however, the stream lines are, generally
speaking, three-dimensional curves.

The solutions of (3.3) correspond to non-isoenergetic vortex flows. We write the constant

C, in the Bernculli integral for the given stream line (uy = ugp = comst), taking (3.6) into
account, in the form
. Cr = Cy + Yaun? (3.8)

In the plane case, when uz= 0, the analogs of the solutions constructed represent
potential spiral flows /ll/ which are obtained by putting formally f,=1 in the second
integral of (3.6). Addition of the component u#; dependent on I, makes the flow (3.3) a vortex
flow. From (3.6) it follows that, just as in the spiral flows, when by = 0, we must exclude
from the region of flow under consideration a neighbourhood of the axis § =0 (otherwise ¢
becomes negative), i.e. the flows should be constructed in annular axisymmetric channels.

4, Let us investigate the specific features of the solutions constructed in Sect. 3,
regarding them as flows in semi-infinite annular channels (z;>» 1), the entry to which, at
Zy=1, forms a ring R <{E<Ry. Using (3.6) and (3.7) we obtain the following expression
for the flow rate P: R

P =2 § pf df = 2aCY ™ (fy (Ry) — fs (Ra) (4.1
R
Therefore the total energy flux H will be given, taking (3.8) into account, by
Re X
H=2n{ Cipfddi= P[Cy+ 5 (s (R) + 1s (R) fs (o) + fo* (R) | 4.2)

Ry
Let us specify the parameter b, characterizing the energy of swirling of the gas flow,
and the quantities R, and R,;. Then the set of equations (3.6) and (3.7), describing the
class of flows in question, will contain unspecified constant C,and (., and a single initial
condition for (3.7), such as e.g. f,(Ry) =fy°. By choosing suitable values for these constants,
we can solve a number of problems. In particular, having specified the quantities P,# and
fs°, we can consider relations (4.1) and (4.2) as a set of equations for determining C,
and C,, where the quantity f;(R,), which depends explicitly on C,,C,, b, is determined imp-
licitly after numerical integration of (3.7) for te=[R,, R,]. In this manner we can, for
example, study the influence of the degree of swirling on the thrust T in the cross section
zg=1

Ra

T(bo)=2n§ p()EdE, p=Sogo-D 4.3)
R

From (3.4) and (3.6) we obtain the following representation for the derivative g :

. 2 (y— 1) g [ba* +- a2 (fa + 0)] @)
& = IRt = DB = F DED—(7— Db .
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From (4.4) we see that, depending on the values of the constants C; >0, by, a(R,) (in
place of the initial condition for fs(R,) we can also specify a (R1)), g’ (R;), can take both
positive and negative values. Thus we can have two types of flows: type A in which the
density increases as the radius increases, g'(R,) >0, and type B in which the density dec-
reases g (R;)<<0. From (3.6) it follows that the density cannot increase without limit as
t increases g < (y — 1)y!CiS,™, and in the case of a B-type flow the flow density may fall
to zero as f —o0 . In the case of A-type flow the quantity f; tends very rapidly to zero
with increasing E. If we have g == g, = const for large f, then (3.6) yields at¥s ! = vy =
const and (3.7) then yields f3 = 0 [s(E)l, at = O [Es(E)), s (E) = exp (—%/yvok?). Thus the long-
itudinal component with respect to the axis of rotation, and the radial component of the
velocity vector both decrease rapidly as the radius increases so that the flow is transformed
into a plane vortex. For B-type flows the quantity jf, decreases as § increases much more
slowly. 1If for large Eg-—0 and &l =v;= const >0, then from (3.6) we have jfy= O (}™).
Let us present some results of numerical computations of A- and B-type flows. The fol-
lowing problem was solved. The values P, H,f,(R) and f;(Ry) in (4.1) and (4.2) were fixed and
used to obtain the constants ¢, and C,, while the quantity R, representing the outer radius
of the annulus was found by numerical integration of (3.7), with the initial value at R =R,
ensuring that at §=R, the function f, would take a given value f;(R) . The parameter 1,

was varied.
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Figure 2 shows graphs of the density for various values of b, (R, =1; fy(1) =1; /5 (Ry) = O04;

v = 1,4). For A-type flows (solid lines) P =1.79; H =668, and for B-type flows (dashed lines)
P =1385 H=026. .

Figure 3 shows the walls of annular channels for both types of flow (the scale should be
increased fifty-fold for case B). For A-type flows the gquantity 7T (b) decreases as b
increases: T(0) = 4.63; T(0.5) = 4.36; T(0.9) = 3.75, and for B-type flows it increases: T (0) = 20,42;
70,5 =20,59; T(1)=21,49.

Unlike the supersonic solutions of Sect. 2, the flows discussed here can be of mixed
type, with both supersonic and subsonic zones present. The equation of sonic surface has the form

fatz® + atk? 4 bSE2 = ySog (§)

The author thanks O.B. Khairullin and O.N. Ul'ianov for carrying out the numerical computations.
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ON THE PROPAGATION OF NON-STEADY PERTURBATIONS IN A BOUNDARY
LAYER WITH SELFINDUCED PRESSURE*

V.B. GURIN and E.D. TERENT'EV

The problem of supersonic flow past a flat plate bearing a triangular
vibrator which begins to execute harmonic oscillations in the unperturbed
boundary layer, is studied. Both the plate and vibrator are assumed to
be thermally insulated. The size of the vibrator and the frequency of
its oscillations are such that the flow can be described by the eguations
for a boundary layer with selfinduced pressure. The oscillation amplitude
is assumed to be small, and this enables the equations to be linearized.
The linear formulation is used to study the problem where the pressure
reaches a steady-state periodic mode. The problem of the vibrator is
used to solve the problem of the propagation of non-steady perturbations
both upstream and downstream.

1. Formulation of the problem and its formal solution. consider the flow of
an ideal gas past a thermally insulated body representing a flat plate with an irregularity
positioned at some distance from the ends, and of which changes its form with time. We shall
assume that the parameters of the incoming unperturbed flow (U<* is the velocity, pu* is
the pressure and p.* is the density) determine the Mach number M« >1 (here and henceforth
the subscript oo refers to the parameters in the unperturbed flow). We assume that the depend-
ence of the first coefficient of viscosity on temperature I* is linear A*/AL =CT' (I'=
T*/T®), and the Prandtl number is equal to unity. The distance from the leading edge of the
plate to the irregularity will be denoted by L*, and in place of the reciprocal of the
Reynolds number we shall use the small parameter e = Re,"/s (Re, = pRULL*/AL,) .

Let us choose the longitudinal dimension of the irregularity O (L*e?), the transverse
dimension QO (L*e%), and the characteristic time of variation in the form of the irregularity

O (L*e*U%). To describe the motion in the neighbourhood of such an irregularity it is
convenient to separate three characteristic regions /1, 2/: the upper region of the supersonic
inviscid flow (y,* = O (L*¢%), the intermediate region of the conventional boundary layer
(ys* = O (L*e*) and the lower region of the boundary layer with selfinduced pressure. The
principal difficulties that arise in such a scheme are connected with constructing a solution
in the lower region, and investigation of this region is the purpose of this paper.

Let us introduce the dependent and independent dimensionless variables used in /3, 4/ and
denote by x and y the Cartesian coordinate axes, with x directed along the plate, u and v
the velocity vector components along the x and y axes, p the pressure and p the density. By
requiring that the conditions of merging with the conventicnal boundary layer hold as z —» —oo
and y —co0, we obtain, from the Navier-Stokes equations for the pincipal terms of the expansion
as e —0, a set of equations for the unsteady boundary layer with selfinduced pressure /3~5/.
We shall describe the irreqularity (Fig.l) in the form

Yo = 0f (£, 2), 01 (1.1)

and demand that the conditions of adhesion hold on the plate and the irregularity. This gives
the following relations for the approximation (g —0) used:

u(t,z, 4 =0, v(t, 2, y) = 60f/0¢ 11.2)
=l
L ES Fig.1l
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