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family of solutions for the oscillatory case h<2 (the aperiodic case is simpler and will 
not be considered). We construct the matrix y(t) using the matrix Yz (Q of (2.17) taking 
the real and imaginary part of the first column of Y, (0 as its first and second column. 
After simple reduction we obtain the following asymptotic representations for the solutions 
of (4.1) (b,,, are the coordinates of the vector c): 

p(t)=(bloosSrh(r)dr+b,ainSl(,(r)dr+o(l))erpSv,odr 

exp ~vlw dr 
t. 1. 

v,(t) = Re 1, (t) = -h (t)/2, q1 (t) = Im 5, (t) = (1 - h2/4)"# 
Note 3. The above method of construcing the real FSM Y(t) of the linearized system (2.2) 

using the FSM of y,(t), with the asymptotic form given by (2.17), can also be used-in the 
general case of n degrees of freedom. If the roots kSTnti are not real (when li= I,), then 

we take the real and imaginary part of the i-th column of Y*(t) as the i-th and (n+i)-th col- 
umn of Y (f) . On the other hand, if &, are real, then we take as the i-th and (n+Q-th 

column of Y(t) the corresponding columns of the matrix l/Z(Y, (0-b i;,(t)). The fact that this 
yields a real FSM of Y(t) of the linearized system (2.2) can be confirmed using the asymptotic 
representation (2.17) for Y,(t). 
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ON TWO TYPES OF SWIRLING GAS FLOWS* 

A.F. SIDOROV 

Two classes of exact solutions of the three-dimensional stationary equa- 
tions of gas dynamics are constructed. The solutions are used to describe 
isentropic gas flows with two types of swirling in axisymmetric divergent 
channels. The effect of swirling on the thrust of special-type nozzles 
is studied. 

Approximate analytic or numerical methods were used earlier to study radial-equilibrium 
flows with arbitrary swirling in /l/, and various qualitative features of the swirling flows, 
such as the appearance of vacuum kernels, back flows and stagnation zones at the inlet to the 
nozzle throat were discussed in /2-4/. Analytic solutions in the transonic approximation were 
constructed in /5/ and the dependence of the nozzle thrust on the swirling parameters were 
investigated in /l, 6-9/. 

1. In studying swirling gas flows we will use two classes of solutions of the equations 
of gas dynamics for the case when the velocity vector components I+ and the function o= py-' 

(P is density and y is the adiabatic index) depend linearly on some spatial coordinates Xk 

/lO/. 
First we consider isentropic three-dimensional flows when the linear dependence on 2% and 

x8 has the form 
Q =.g h)r u, = g, k) (1.1) 
Ui = 4 Cd 0% + f: (4 za + gt W, i = 2, 3 

*Prikl.Matem.Mekhan.,47,5,754-761,1983. 
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The eight functions g,g,,lt,fr satisfy the following set of ordinary differential equations /lo/: 

where So = const is 
p is the pressure, 

First we will 
constants) 

ihgl + Y (Y - I)-' S&' = 0, gll,’ + l*Zi + Lj* = 0 (1.2) 

gzfi’ +f*h + faff = 05 glgf’ f gdf + SJi = O 
g,g’ + (Y - 1) g (n’ + 4 + fs) = 0 

the value of the entropy function in the equation of state p = S@, and 
We find that Eqs.cl.2) are completely integrable in quadratures. 
obtain, in an obvious way, the three integrals(K,, and Ai are arbitrary 

'/&,l + Y (v - 1)-'&g = &,, gi = A,11 + Alfi (1.3) 

The constants A,, A, correspond to the transfer of the origin of coordinates along the axes 
x1 and zg, and we can assume without loss of generality that AZ =A, = 0, i.e. 

g, = g,rO (1.4) 

Furthermore, from the second and third equation of (1.2) (C, are arbitraryconstants) it follows 
that 

f* = Cd,, 1, - fs = w* (1.5) 

Eliminating from the second equation of (1.2) containing 1,' the functions 4' and jr weobtaig 
using the last equation of (1.2) and (1.31, an equation for I, which, on integration, yields 

I,= C,g, (p - g,r)l/+l), b = 2K0, C, = const (1.6) 

Substituting into the second equation of (1.2) for l,' the representations for all func- 
tions 11 and fi in terms of g,, we obtain a second-order equation for 'gl(zl). Substituting 

'/*&'n = II in this equation and taking g, as an independent variable, we obtain for y(g,)a 
first-order linear equation, which on integration yields 

y = g, (f3 - g~‘py-w-~) [g? (y + 1) - p (y - I)]-’ (CL - (1.7) 

2 (Y - 1) u J 19 (v + 1) - f! (y - I)1 (B - 21)(*+‘@-1) c3.E) 

u = (l/*CI1 -/- C,) C,‘, c* = const 

Computing in (1.7).the quadrature using the substitution = (B - $)1/M = z, we obtain the 
last integral containing arbitrary constants C* and A, 

q + A,= 2-"' s [G (gSl++ Y+ H)[C* -j- 2(y---l)*aG(gl)l_'l*dg~. G(gl)=gl(@- g,*p-1) (1.8) 

Relation (1.8) defines the function gl(tl) implicitly, and the function 4 has the form 

1, = 2-'1s (7 - 1)-l IG (gJl’/~ IC* + 2 (y - l)* CrG (gJ“’ (1.9) 

Thus we haye obtained a general solution for Eqs.cl.2) depending on eight arbitrary con- 

stants C,, C,, C,, A,, A,, A,, K,, C*. Three of these constants A,, A, and A,(A, defines the 
displacement along the z,-axis) are not real, and we shall henceforth assume that A, = A,= 
A,=O. 

The class of solutions of (1.1) has the following geometrical property: the components Y, 
and ut maintain a constant value along thestream lines, each of which represents a planecurve. 
Indeed, taking 2; as the parameter along the stream lines we find from the second and third 
equation of (1.21, using the equations of the stream lines, that if u1 = uto I const(i = 2,3) 
along some stream line, then this stream line lies in the plane 

UJ"z, - &OX, = C" = const 

2. We shall consider the case when the class of Solutions constructeddefines asymmetric 
flows with x1 as the axis of symmetry. Here it is sufficient to satisfy two conditions 

U-i- Y, = 0, lps + Y = f*Z + f: (2.1) 

obtain from (1.11, if we 
depend only on x1 and r 
following possibilities: 
and 4) CI = -1, C, = 0. 

require that the radial velocity component 
= vx** + Is'. 

11, = 1/%' + ui should 
Taking (1.5) into account, we obtain frcm (2.1) the 

1) 1, = f* = 0, I, = fs; 2) & =fs = C, = 0; 3) C, = 1, C, is arbitrary, 

For case 1 we have C, = 0 
through the s,-axis. There, 

in (1.6) and the stream lines lie in meridian planes passing 
is no rotation of the stream about the xl -axis. Case 2 leads 

to trivial solutions with g = con&* g1 - const. 
virtue of the last equation of (l-2), 

Case 3 for which 2&- CJ, = 0 leads, by 
to the same trivial possibility. 

We shall consider case 4 in more detail 

ua - 1% (Xl) 5% - 4 (21) %, lls = 4 (51) x-2 -t 12 (3) 5 (2.2) 

(u,* = (k' + V) 9) 
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We shall use the representations (2.2) to solve the following problem. Let the inlet 
cross section of the axisyanaetric channel (x1> 0) be a circle, x*’ f x3” < IP, 5, = 0, and 
let the following quantities be given: 

g1 (0) = gIo > 0, 1, (0) = 2 co9 (po, 2, (0) = 1 sin Q. (2.3) 

'PO' con& 

Then Eqs.(2.2), which define at x1 = 0 a field of transverse velocities of a gas flow 
twisted as a rigid body (such a twist is studied in /3/ for the case of a rotating block of 
solid fuel burning uniformly from one end). The parameter Q. determines the swirling intensity, 
and there is no swirling when Q, = 0. The form of the stream lines emerging from the points 
of the circumference q(r = R, x1 = O)and forming the walls of some nozzle at sl> 0, depends 
on the value of the parameter Qe; 

Let us investigate how the form of the nozzle and its thrust are affected by variations 
in (PO for various nozzle lengths L. We note that the flows in question are non-isoenergetic. 
The constant CL in the Bernoulli integral, for the stream lines passing at x1 = 0 through 
the points of the circumference r = h, is equal to 

0, = '/J'?? + K. (0 Q h Q R) 

we shall further assume that Ko = (V - I)-’ (this can be done without loss of generality by 
choosing a suitable system of units). From (1.6) we find 

G, = 1 sin ~~~~~~~ a = -C,¶, l Go = G (g:) (2.4) 

and (1.9) in this case yields 
C* = 2 (y - i)‘FG,’ (2.5) 

Thus we have found all the arbitrary constants. Next we determine the stream lines. We 
find that although the integral in (1.8) cannot, in general, be expressed in terms ofelementary 
functions, the equations of the stream lines can be integrated explicitly using the quantity 
81 as a parameter along these lines. 

Fixing on the circumference q the point 

2%" = R co9 Q, xs" = R sin Q (2.6) 

so that 
us0 = Rlcos (Q + Qo), US' = RZ sin (Q + Qo) (2.7) 

We use Eqs.(1.8),(2.4) and (2.5) to reduce the equations of the stream lines to the form 

d.rL = -(y- 1) B,G-+P’IldG (2.8) 

F I-- Z sin' QoGo-'G, BI, = 14’2~l (y - 1)-‘Z’V&‘~* 

Integrating (2.8), taking (2.6) and (2.7) into account, we reduce the parametricequations 
of the stream lines to the form 

z1 = R [sin (Q + Qo) sin Q. f co8 (Q + Q,) Go’MF’W~*l (2.9) 

2, = R (-CDS (Q + cpo) sin Q, + Sin (Q + cpo) GoWW~F~*] 

Analysis of the representations (2.9) yields directly the possible range of variation of 

811 namely gr E [g_, g+], g* = 2'11 (T f I)-'/*. The value g, = g+ corresponds to the point at 
which the stream lines reverse their direction, while the pressure and density both vanish at 

gi = 8_ (this happens when the stream lines recede to infinity). The integral in (1.8) will 
diverge, since I/, (1 - 2y)(y - i)-' c-i. The radius of the axisymmetric nozzle formed by the 
stream lines emerging from the circumference q is given by the expression 

r = RG,'l@l* (2.10) 

Clearly, when g,+g_, we have r-00 and rr-+m~ i.e. the nozzle walls diverge without 

limit. The following expression holds for the thrust Tr. (cpo) of the nozzle when x,E IO, L1 and 

r Q RL (Qo) (RL (Qo) - r (L)): 

& Tr. (QO) = {w dr + IL (Qo) - -+ ~‘RRL” (Qo) 

R&W 

IL (Qo) = 1 lrdr 
R 

(2.11) 



615 

where p0 is the pressure at the nozzle inlet 5,= 0 and pi is the back pressure at the cross 
section z1 = L . The first and third term of (2.11) are independent of cp,. 

Consider the behaviour of the integral IL (%). The function G(h) (1.8) decreases 
monotonically(fl = 2 (v - 1)-r) to zero when g, E Ig_, g+]. Let the second equation of (1.8) define 
the function g, = g,(G) and let g, = g,(L,q& G = G (L, cpO) in the cross section z1 = L . Then 
using (2.4) and (2.5) we obtain, from the integral (1.81, the following expression for G(L, 
90) : q 5 

L=--zi- s 
g, (G) G+F-“‘dG (2.12) 

G(L. ‘44 

For fixed L it follows at once from (2.12) thatthe function G(L,rp,)increases monotonic- 
ally for cpE lO,n/21 (G(L,cp,)<G@ and the integral (2.12) converges at the point G = G,), 
while from (2.10) we find that RL((P~) is a monotonically decreasing function of 90. Using 
(2.10) we can write the integral In(mO) in the form 

IL (& _ Ia f g;v (c) @‘-2& , 

G(L, '8.1 

When L-m, we have G(m,cp,J = 0, and the integral (2.13) converges and is independent 
of cp, since y> 1. When the length L is finite, the integral ZL(~J decreases monotonically 
as 'pO E 10,x/21 increases. If pr. = 0 in (2.11) (no back pressure), then the thrust of the 
corresponding nozzles decreases for finite L as the swirling increases. Canputations show 
that the reduction in thrust is insignificant. 

4 
I 

0.d 

Figure 1 shows graphs of In&) (the dashed linecorres- 
ponds to cpo = n/4) and the nozzle walls in the 4, r- 
plane, for y = 1.4 and 7 = 2. The values of the 
remaining parameters areR ==l, S, =nr i,glo = g++ OA,l- 1. 
Note that the flow is supersonic everywhere within the 
nozzle. Indeed, we have the following expression for 
the speed of'sound c: 

8 = 1 - I/, (v - 1) gl* 

Then for gr> g+ we have 1s I*>@. Now using (2.10) 
we obtain for large zi the following asymptoticestimates 
at the nozzle walls: r==O(z,), p = O(qT). 

3. Consider three-dimensional flows with a linear dep- 
endence on a single coordinate 

ut = gf (2,. 2s). i = i, 2; (3.1) 

. ~r-fr(~~.~~rrzr+fr(~tttr) 

Q==gb,, %). s, = Cmd 

1 L 
The function g,,ft and g satisfy the following set of 

Fig. 1 
equations: 

81~+gz~+*&*==O, i==i,2; 

g1a+g*2+ faf*--o, i-O,3 

i)++-g +2)-o 

(3.2) 

We shall investigate the class of axisymmetric motions (3.1) with z, used as the axis of sym- 
metry in the form 

g, = a (El =l - b (8 =r, g, = b (E) 21 + a (8 =a (3.3) 

8 = g(E)* fr = f; (r), E = VsC + +c 

Substituting (3.3) into (3.2) we obtain the following set of equations for the functions s, b, 
g, fr: 
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(3.4) a (2b + b’E) = 0, of*‘& + fsf! = 0, i = 0,3 

a0 - b2 + aa’f f y (y - I)-%&'g' = 0 

ag'E + (v - 1) g V5 + 2s +i- U'S) = 0 

The case amz 0 (then we also have f *e 0) corresponds to plane parallel flows, and we shall 
not consider it. The first two equations of (3.4) yield two simple integrals 

6 = bo&-2, f. = Cofa; bo =E const, C, = const (3.5) 

We can write Ce = 0 without loss of generality, since specifying the value of Co is 
equivalent to shifting the origin of coordinates along the q-axis. Using (2.5) we obtain 
another two integrals from the remaining equations of (3.4) 

=i&'sa + Y (Y - 1)-'&g + ‘/rb,SE2 = C, = con& (3.6) 

g = c, (aE')'-yf*Y-1, Ca = const 

This reduces the problem of integrating the system (3.4) to that of integrating a single first- 
order equation 

aufr' + fi = 0 (3.7) 

in which the function a must be expressed in terms of & and fs with help of (3.6). Integration 
in quadratures cannot be carried out when y is arbitrary. 

We note that in the case of the solutions of (3.1), Eq.(3.2) implies a property analogous 
to that established in Sect. 1, namely that the velocity component us has a constant value 
along the stream lines. Unlike the previous case however, the stream lines are, generally 
speaking, three-dimensional curves. 

The solutions of (3.31 correspond to non-isoenergetic vortex flows. We write the constant 
CL in the Bernoulli integral for the given stream line (us = ua- coo&), taking (3.6) into 

account, in the form 
CA = c, -I- l/Pu&z (3.8) 

In the plane case, when ~1s~ 0, the analogs of the solutions constructed represent 
potential spiral flows /ll/ which are obtained by putting formally frs 1 in the second 
integral of (3.6). Addition of the component us dependent on z,makes the flow (3.3) a vortex 
fLow. From (3.6) it follows that, just as in the spiral flows, when b0 + 0, we must exclude 
from the region of flow under consideration a neighbourhood of the axis 8 = 0 (otherwise g 
becomes negative), i.e. the flows should be constructed in annular axisymmetric channels. 

4. Let us investigate the specific features of the solutions constructed in Sect. 3, 
regarding them as flows in semi-infinite annular channels (so > I), the entry to which, at 
a=i , forms a ring Rl<&<RS. Using (3.6) and (3.7) we obtain the following expression 

for the flow rate P: 

P=2nRS’pf&@ = 2nC:““’ (f s (&) - f s (RI)) (4.1) 
IG 

Therefore the total energy flux N will be given, taking (3.8) into account, by 

H=znR=Clpf&dS= P [c,+ 
s -& (fs2 (4 f fs Pl) fs (%I + fs’ (Hr))! (4.2) 

Rt 

Let us specify the parameter b, characterizing the energy of swirling of the gas flow, 
and the quantities RI and R,. Then the set of equations (3.6) and (3.71, describing the 
class of flows in question, will contain unspecified constant C, and C,, and a single initial 
condition for (3.71, such as e.g. f3(Rl) =fJ”. By choosing suitable values for theseconstants, 
we can solve a number of problems. In particular, having specified the quantities P,H and 

0 we can consider relations 
andfs 'C,, where the quantity fs(Rr), 

(4.1) and (4.2) as a set of equations for determining cl 
which depends explicitly on C,, C,, b,, is determined imp- 

licitly after numerical integration of (3.7) for ~E~R~,RJ. In this manner we can, for 
example, study the influence of the degree of swirling on the thrust T in the cross section 

% = 1 

T (bo) = p = S@‘(*l) 
Rt 

From (3.4) and (3.6) we obtain the following representation for 

'- g- 
z(V--i)g[b3+~.EI(II+o)l 

E[PC,(Y- i)C- (vt VPa'- (Y- ow 

(4.3) 

the derivative g’ : 

(4.4) 
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From (4. .4) we see that, depending on the values of the constants C, >O, &,,a (R,) (in 
place of the initial condition for fs(R1) we can also specify a (RI)), g’ (R,), can take both 
positive and negative values. Thus we can have two types of flows: type A in which the 

density increases as the radius increases, g'(R,)>O, and type B in which the density dec- 

reases g’ (R,)< 0. From (3.6) it follows that the density cannot increase without limit as 
f increases g<((y - 1)~-rCrS,-', and in the case of a B-type flow the flow density may fall 
to zero as f, --too . In the case of A-type flow the quantity fs tends very rapidly to zero 
with increasing E. If we have g= g,= const for large & , then (3.6) yields ogzf;’ z Yg = 

const and (3.7) then yields fs = 0 Is @)I, & = 0 [E-Q (&)I, s(E)= exp (-*/,v&*). Thus the long- 
itudinal component with respect to the axis of rotation, and the radial component of the 
velocity vector both decrease rapidly as the radius increases so that the flow istransformed 
into a plane vortex. For B-type flows the quantity fs decreases as g increases much more 
slowly. If for large Eg+O and aF, =vr= const>O, then from (3.6) we have fr = O&l). 

Let us present some results of numerical computations of A- and B-type flows. The fol- 
lowing problem was solved. The values P,H,fr(II,) and fs(RI) in (4.1) and (4.2) were fixed and 
used to obtain the constants C, and C,, while the quantity RI representing the outer radius 
of the annulus was found by numerical integration of (3.71, with the initial value at R = R1 

ensuring that at E- R1 the function fs would take a given value is(&). The parameter bp 

was varied. 

Fig. 2 Fig.3 

Figure 2 shows graphs of the density for various values of b, (R, = 1; f, (i) = 1; 1, (R,) = 0.i; 

y = 1,4). For A-type flows (solid lines) P- 1.79; H= 6.68, and for B-type flows (dashed lines) 
P = 13.85; H = 92.6 . 

Figure 3 shows the walls of annular channels for both types of flow (the scale should be 
increased fifty-fold for case B). For A-type flows the quantity T(b,) decreases as b. 

increases: T (0) = 4.63; T (0.5) = 4.36: T(O.9) = 3.75, and for B-type flows it increases: T (0) = 20,42; 
T(0,5) = 20,59; T(i) = 21,49 . 

Unlike the supersonic solutions of Sect. 2, the flows discussed here can be of mixed 

type, with both supersonic and subsonic zonespresent.Theequationofsonicsurfacehas the form 

i&~' + agr + b,'E-' = y&g (6) 

The authorthanks O.B. Ehairullinand0.N. Ul'ianovforcarryingoutthenumericalcomputations. 
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ON THE PROPAGATION OF NON-STEADY PERTURBATIONS IN A BOUNDARY 
LAYER WITH SELFINDUCED PRESSURE* 

V.B. GURIN and E.D. TBREMT'EV 

The problem of supersonic flow past a flat plate bearing a triangular 
vibrator which begins to execute harmonic oscillations in the unperturbed 
boundary layer, is studied. Both the plate and vibrator are assumed to 
be thermally insulated. The size of the vibrator and the frequency of 
its oscillations are such that the flow can be described bythe equations 
for a boundary layer with selfinduced pressure. The oscillationemplitude 
is assumed to be small, and this enables the equations to be linearized. 
The linear formulation is used to study the problem where the pressure 
reaches a steady-state periodic mode. The problem of the vibrator is 
used to solve the problem of the propagation of non-steady perturbations 
both upstreamanddownstreem. 

1. Formulation of the problem and its formal solution. Consider the flow of 
an ideal gas past a thermally insulated body representing a flat plate with an irregularity 
positioned at some distance from the ends, and of which changes its form with time. We shall 
assume that the parameters of the incoming unperturbed flow (u,* is the velocity, pm* is 
the pressure and pm* is the density) determine the Mach number Mm>1 (here and henceforth 
the subscriptca refers to the parameters in the unperturbed flow). We assume that the depend- 
ence of the first coefficient of viscosity on temperature T* is linear 
T+/T2), 

a,*/?& = CT’ (T’ = 
and the Prandtl number is equal to unity. The distance from the leading edge of the 

plate to the irregularity will be denoted by L*, and in place of the reciprocal of the 
Reynolds number we shall use the small parameter e = ReI-“* (Re, = p+,U+,L+/k&) . 

Let us choose the longitudinal dimension of the irregularity 0 (L*e3), the transverse 
dimension iJ(L*e6), and the characteristic time of variation in the form of the irregularity 

0 (L*eVU”,). To describe the motion in the neighbourhood of such an irregularity it is 
convenient to separate three characteristic regions /I, 2/: the upper region of the supersonic 
inviscid flow (yl* = O(L*e')), the intermediate region of the conventional boundary layer 
(y,* = O(L*@)) and the lower region of the boundary layer with selfinduced pressure. The 
principal difficulties that arise in such a scheme are connected with constructing a solution 
in the lower region, and investigation of this region is the purpose of this paper. 

Let us introduce the dependent and independent dimensionless variables used in /3, 4/ and 
denote by x and y the Cartesian coordinate axes, with x directed along the plate, u and v 
the velocity vector components along the x and y axes, p the pressure and p the density. By 
requiring that the conditions of merging with the conventional boundary layer hold as x +-00 
and y -00, we obtain, from the Navier-Stokes equations for the pincipal terms of the expansion 
as e-+0, a set of equations for the unsteady boundary layer with selfinduced pressure /3-s/. 
We shall describe the irregularity (Fig.1) in the form 

Y, = cf (& m), c< 1 (1.1) 

and demand that the conditions of adhesion hold on the plate and the irregularity. This gives 

the following relations for the approximation (8 +O) used: 

a (t, 2, yp) = 0, v(1, 5, y,) = oaf/at f1.2) 

Fig.1 
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